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To set the stage, first I want to mention a few ways that virtual reality rendering differs 

from the more familiar kind of GPU rendering that real-time 3D apps and games have 

been doing up to now.
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First, virtual reality is extremely demanding with respect to rendering performance. Both 

the Oculus Rift and HTC Vive headsets require 90 frames per second, which is much 

higher than the 60 fps that’s usually considered the gold standard for real-time rendering.

We also need to hit this framerate while maintaining low latency between head motion 

and display updates. Research indicates that the total motion-to-photons latency should 

be at most 20 milliseconds to ensure that the experience is comfortable for players. This 

isn’t trivial to achieve, because we have a long pipeline, where input has to be first 

processed by the CPU, then a new frame has to be submitted to the GPU and rendered, 

then finally scanned out to the display.

Traditional real-time rendering pipelines have not been optimized to minimize latency, so 

this goal requires us to change our mindset a little bit.
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Another thing that makes VR rendering performance a challenge is that we have to 

render the scene twice, now, to achieve the stereo eye views that give VR worlds a sense 

of depth. Today, this tends to approximately double the amount of work that has to be 

done to render each frame, both on the CPU and the GPU, and that clearly comes with a 

steep performance cost.

However, the key fact about stereo rendering is that both eyes are looking at the same 

scene. They see essentially the same objects, from almost the same viewpoint. And we 

ought to be able to find ways to exploit that commonality to reduce the rendering cost of 

generating these stereo views.

4



Finally, another unusual feature of rendering for a VR headset is that the image we 

present has to be barrel-distorted to counteract the optical effects of the lenses.

The trouble is that GPUs can’t natively render into a nonlinearly distorted view like this. 

Current VR software solves this problem by first rendering a normal perspective 

projection (left), then resampling to the distorted view (right) as a postprocess.
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As a GPU company, of course NVIDIA is going to do all we can to help VR game and 

headset developers use our GPUs to create the best VR experiences. To that end, we’ve 

built—and are continuing to build—GameWorks VR. GameWorks VR is the name for a 

suite of technologies we’re developing to tackle the challenges I’ve just mentioned—

high-framerate, low-latency, stereo, and distorted rendering.

It has several different components, which we’ll go through in this talk. The first two 

features, VR SLI and multi-res shading, are targeted more at game and engine developers. 

The last three are more low-level features, intended for VR headset developers to use in 

their software stack.
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Besides GameWorks VR, we’ve just announced today another suite of technologies called 

DesignWorks VR. These are some extra features just for our Quadro line, and they’re 

targeted more at CAVEs, cluster rendering and things like that, rather than VR headsets. 

I’m not going to be covering these in those session, though—there’ll be more 

information about DesignWorks VR in the coming days. And all the GameWorks VR 

features that I’m speaking about today are also available on Quadro with DesignWorks VR.
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Given that the two stereo views are independent of each other, it’s intuitively obvious 

that you can parallelize the rendering of them across two GPUs to get a massive 

improvement in performance.

In other words, you render one eye on each GPU, and combine both images together into 

a single frame to send out to the headset. This reduces the amount of work each GPU is 

doing, and thus improves your framerate—or alternatively, it allows you to use higher 

graphics settings while staying above the headset’s 90 FPS refresh rate, and without 

hurting latency at all.

9



Before we dig into VR SLI, as a quick interlude, let me first explain how ordinary SLI

normally works.  For years, we’ve had alternate-frame SLI, in which the GPUs trade off 

frames. In the case of two GPUs, one renders the even frames and the other the odd 

frames. The GPU start times are staggered half a frame apart to try to maintain regular 

frame delivery to the display.

This works reasonably well to increase framerate relative to a single-GPU system, but it 

doesn’t help with latency.  So this isn’t the best model for VR.
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A better way to use two GPUs for VR rendering is to split the work of drawing a single 

frame across them—namely, by rendering each eye on one GPU.  This has the nice 

property that it improves both framerate and latency relative to a single-GPU system.
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I’ll touch on some of the main features of our VR SLI API. First, it enables GPU affinity 

masking: the ability to select which GPUs a set of draw calls will go to. With our API, you 

can do this with a simple API call that sets a bitmask of active GPUs. Then all draw calls 

you issue will be sent to those GPUs, until you change the mask again.

With this feature, if an engine already supports sequential stereo rendering, it’s very easy 

to enable dual-GPU support. All you have to do is add a few lines of code to set the mask 

to the first GPU before rendering the left eye, then set the mask to the second GPU before 

rendering the right eye. For things like shadow maps, or GPU physics simulations where 

the data will be used by both GPUs, you can set the mask to include both GPUs, and the 

draw calls will be broadcast to them. It really is that simple, and incredibly easy to 

integrate in an engine.

By the way, all of this extends to as many GPUs as you have in your machine, not just two.  

So you can use affinity masking to explicitly control how work gets divided across 4 or 8 

GPUs, as well.
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GPU affinity masking is a great way to get started adding VR SLI support to your engine. 

However, note that with affinity masking you’re still paying the CPU cost for rendering 

both eyes. After splitting the app’s rendering work across two GPUs, your top 

performance bottleneck can easily shift to the CPU.

To alleviate this, VR SLI supports a second style of use, which we call broadcasting. This 

allows you to render both eye views using a single set of draw calls, rather than 

submitting entirely separate draw calls for each eye. Thus, it cuts the number of draw calls 

per frame—and their associated CPU overhead—roughly in half.

This works because the draw calls for the two eyes are almost completely the same to 

begin with. Both eyes can see the same objects, are rendering the same geometry, with 

the same shaders, textures, and so on. So when you render them separately, you’re doing 

a lot of redundant work on the CPU.
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The only difference between the eyes is their view position—just a few numbers in a 

constant buffer. So, VR SLI lets you send different constant buffers to each GPU, so that 

each eye view is rendered from its correct position when the draw calls are broadcast.

So, you can prepare one constant buffer that contains the left eye view matrix, and 

another buffer with the right eye view matrix. Then, in our API we have a 

SetConstantBuffers call that takes both the left and right eye constant buffers at once and 

sends them to the respective GPUs. Similarly, you can set up the GPUs with different 

viewports and scissor rectangles.

Altogether, this allows you to render your scene only once, broadcasting those draw calls 

to both GPUs, and using a handful of per-GPU state settings. This lets you render both 

eyes with hardly any more CPU overhead then it would cost to render a single view.

14



Of course, at times we need to be able to transfer data between GPUs. For instance, after 

we’ve finished rendering our two eye views, we have to get them back onto a single GPU 

to output to the display. So we have an API call that lets you copy a texture or a buffer 

between two specified GPUs, or to/from system memory, using the PCI Express bus.

One point worth noting here is that the PCI Express bus is actually kind of slow. PCIe2.0 

x16 only gives you 8 GB/sec of bandwidth, which isn’t that much, and it means that 

transferring an eye view will require about a millisecond. That’s a significant fraction of 

your frame time at 90 Hz, so that’s something to keep in mind.

To help work around that problem, our API supports asynchronous copies. The copy can 

be kicked off and done in the background while the GPU does some other rendering 

work, and the GPU can later wait for the copy to finish using fences. So at least you have 

the opportunity to hide the PCIe latency behind some other work.
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Stereo rendering with one eye per GPU is the main way we expect people to use VR SLI. 

But VR SLI is even more than that—it’s really a DX11 extension API that gives application 

developers explicit control over how work is distributed across any number of GPUs. So if 

you want to support 4 GPUs or even 8 GPUs in a machine, you can do it. The power is in 

your hands to split up the work however you want, over however many GPUs you choose 

to support.

An important point here is that since VR SLI is all about giving the application explicit 

control, it does require active integration into a renderer—it’s not possible to 

automatically enable VR SLI in apps or games that haven’t integrated it, in contrast to 

other SLI modes like alternate-frame rendering.

It exists as an extension API to DX11. The VR SLI API is currently under NDA, but will be 

released as a public beta very soon. And we haven’t forgotten about OpenGL—we have a 

GL extension in progress that provides very similar multi-GPU features. It’s still in 

development and therefore also under NDA for the time being, but if you’d like to test it 

and give feedback, get in touch with us!
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VR SLI is a great feature to get maximum performance out of a multi-GPU system. But 

how can we make stereo rendering more efficient even on a single GPU? That’s where my 

next topic comes in.
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With VR SLI, we were talking about splitting the stereo rendering work across multiple 

GPUs. If we’re on a single-GPU system, then the GPU just has to draw both views; there’s 

not much we can do about that for the time being.

On the other hand, consider the CPU overhead of resubmitting the draw calls for each 

eye. With VR SLI we had a broadcast mode where we could submit the draw calls once, 

cutting the CPU overhead. Can we do something like that with single-GPU rendering?
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In DirectX, both DX11 and DX12 offer the concept of a command list at the API level. You 

can record a sequence of API calls into a command list, and the driver will do as much of 

the internal processing as it can when the command list is created, making it relatively 

cheap to execute later.

So, you can record your scene rendering in a command list, then replay the command list 

for each eye with minimal CPU overhead. In order to get the correct view matrix for each 

eye, you can store it in a global constant buffer, and update it between eyes. That works 

because command lists only store references to resources like buffers and textures, not 

the contents of the resources.

19



In OpenGL, there’s no native concept of command lists. (There were display lists once 

upon a time, but they’re deprecated now, and they don’t quite do what you want 

anyway.) However, on NVIDIA GPUs we expose an extension called GL_NV_command_list 

that offers similar functionality.

I won’t go into details here, but basically the extension defines a bytecode-like binary 

format in which you encode your rendering commands and store them all in a buffer; 

then you can submit that to the driver in one very efficient API call. Again, you can record 

your scene rendering in this buffer once, then submit it twice to render both eyes, while 

updating a uniform buffer in between to set the correct view matrix for each eye.

Spec: http://developer.download.nvidia.com/opengl/specs/GL_NV_command_list.txt

For more info: http://on-demand.gputechconf.com/gtc/2015/presentation/S5135-

Christoph-Kubisch-Pierre-Boudier.pdf
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We’ve been talking a lot about how to do efficient stereo rendering for VR. Now I’m going 

to switch gears and talk about how we can take advantage of the optics in a VR headset 

to improve rendering performance.
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First, the basic facts about how the optics in a VR headset work.

VR headsets have lenses to expand their field of view and enable your eyes to focus on 

the screen. However, the lenses also introduce pincushion distortion in the image, as seen 

here. Note how the straight grid lines on the background are bowed inward when seen 

through the lens.
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So we have to render an image that’s distorted in the opposite way—barrel distortion, 

like what you see on the right—to cancel out the lens effects.  When viewed through the 

lens, the user perceives a geometrically correct image again.

Chromatic aberration, or the separation of red, green, and blue colors, is another lens 

artifact that we have to counter in software to give the user a faithfully rendered view.

24



The trouble is that GPUs can’t natively render into a nonlinearly distorted view like this—

their rasterization hardware is designed around the assumption of linear perspective 

projections. Current VR software solves this problem by first rendering a normal 

perspective projection (left), then resampling to the distorted view (right) as a 

postprocess.

You’ll notice that the original rendered image is much larger than the distorted view. In 

fact, on the Oculus Rift and HTC Vive headsets, the recommended rendered image size is 

close to double the pixel count of the final distorted image.
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The reason for this is that if you look at what happens during the distortion pass, you find 

that while the center of the image stays the same, the outskirts are getting squashed 

quite a bit.

Look at the green circles—they’re the same size, and they enclose the same region of the 

image in both the original and the distorted views. Then compare that to the red box. It 

gets mapped to a significantly smaller region in the distorted view.

This means we’re over-shading the outskirts of the image. We’re rendering and shading 

lots of pixels that are never making it out to the display—they’re just getting thrown 

away during the distortion pass.  It’s a significant inefficiency, and it slows you down.
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That brings us to multi-resolution shading. The idea is to subdivide the image into a set of 

adjoining viewports—here, a 3x3 grid of them. We keep the center viewport the same 

size, but scale down all the ones around the outside. All the left, right, top and bottom 

edges are scaled in, effectively reducing the resolution in the outskirts of the image, while 

maintaining full resolution at the center.

Now, because everything is still just a standard, rectilinear perspective projection, the 

GPU can render natively into this collection of viewports. But now we’re better 

approximating the pixel density of the distorted image that we eventually want to 

generate. Since we’re closer to the final pixel density, we’re not over-rendering and 

wasting so many pixels, and we can get a substantial performance boost for no 

perceptible reduction in image quality.

Depending on how aggressive you want to be with scaling down the outer regions, you 

can save anywhere from 20% to 50% of the pixels.
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The key thing that makes this technique a performance win is a hardware feature we have 

on NVIDIA’s Maxwell architecture—in other words, the GeForce GTX 900 series, Titan X, 

and Quadro M6000.

Ordinarily, replicating all scene geometry to several viewports would be prohibitively 

expensive. There are various ways you can do it, such as resubmitting draw calls, 

instancing, and geometry shader expansion—but all of those will add enough overhead 

to eat up any gains you got from reducing the pixel count.

With Maxwell, we have the ability to very efficiently broadcast the geometry to many 

viewports, of arbitrary shapes and sizes, in hardware, while only submitting the draw calls 

once and running the GPU geometry pipeline once. That lets us render into this multi-

resolution render target in a single pass, just as efficiently as an ordinary render target.
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Another way to understand what multi-resolution shading is doing is to look at a graph of 

pixel density aross the image.

The green line represents the ideal pixel density needed for the final image; it’s high in the 

center, but falls off toward the edges where the barrel distortion squashes the image. 

With standard rendering, we’re taking the maximum density—which occurs at the 

center—and rendering the entire image at that high density. The space between these 

curves represents wasted over-rendering.
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With multi-resolution shading, we can reduce the pixel density at the edges, to more 

closely approximate the ideal density.

In this graph, I’m showing a “conservative” multi-res setting in which the blue line never 

drops below the green line. In other words, we never have less than one rendered pixel 

per display pixel, anywhere in the image. This setting lets us save about 25% of the pixels. 

In the ideal case where you’re perfectly pixel-bound, that works out to a 1.3x performance 

improvement.
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It’s also possible to go to a more aggressive setting, where we reduce the pixel density at 

the edges of the image even further. This requires some care, as it could visibly affect 

image quality, depending on your scene.  But in many scenes, even an aggressive setting 

like this may be almost unnoticeable—and it lets you save 50% of the pixels, which 

translates into a 2x speedup if perfectly pixel-bound.
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Like VR SLI, multi-res shading will require developers to integrate the technique in their 

applications—it’s not something that can be turned on automatically by a driver. Beyond 

simply enabling multi-res in the main pass, developers will also have to modify most 

screen-space postprocessing passes that operate on the multi-res render target, such as 

bloom, SSAO, or motion blur. Deferred shading renderers will also need modifications to 

their lighting passes.

Our SDK for multi-res shading is still in development, but stay tuned for updates over the 

next couple of months. Like VR SLI, multi-res shading will also take the form of DX11 and 

OpenGL extensions. And because it relies on the Maxwell fast viewport broadcast feature, 

it’s only going to be available for Maxwell GPUs—namely, the GTX 900 series, Titan X, and 

Quadro M6000.
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We’ve been talking a lot about methods of improving rendering throughput for VR: 

distributing work across GPUs, getting more draw calls out faster, and cutting down the 

number of pixels you need to render. All of those techniques are meant for application, 

engine, and game developers to use to improve their VR rendering performance.

In the remainder of this session, I’ll talk about some lower-level features that are targeted 

more at people making VR headsets themselves, and the software stacks that enable 

apps and games to use them. To start with, I’m going to explain a little about how GPU 

multitasking works.
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It’s often said that the GPU is a massively parallel processor, and it is—it can process many 

vertices, triangles, pixels and so on in parallel. However, the front end of the GPU is still 

mostly serial. The front end is the part that accepts buffers of rendering commands, such 

as state changes and draw calls, from applications. It consumes them in order and 

launches work into the rest of the GPU based on their instructions.
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However, on a PC we may have many apps running that want to use the GPU—not just 

3D apps and games, but web browsers, video players and other innocuous applications. 

And, importantly, on Windows the desktop compositor also uses the GPU to render your 

desktop and all your application windows and in some cases their UI. We’ll come back to 

that.

Much like the operating system schedules threads from different applications to run on a 

CPU core, it also schedules DX/GL rendering contexts from different applications to run 

on the GPU. As apps issue DX/GL API calls, the driver batches them together into packets 

of hardware-level GPU commands, and eventually submits them to the operating system. 

Usually there’s a small number of packets per frame, per application. The Windows GPU 

scheduler takes the packets from all the apps, orders them and queues them up for the 

GPU to execute, ensuring that every application gets a chance to use the GPU.
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One problem with this is that prior to Windows 10, a command packet once submitted to 

the GPU can’t be interrupted. This means that an app that’s using the GPU heavily, 

producing many long-running command packets, could starve other apps of GPU 

access—even if those apps are very lightweight.

This particularly affects the desktop compositor. Desktop composition is not an expensive 

operation, but it needs to happen reliably at 60 Hz (or whatever your monitor’s refresh 

rate is) to ensure a good experience when manipulating windows, switching between 

apps and so forth. If you have a heavy rendering app running at 5fps, we don’t want 

everything else on your system to slow down to 5fps as well.
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The way this is solved prior to Windows 10 is that we have an extra WDDM “node”, 

basically a thing that presents itself to Windows as a device on which graphics command 

packets can be scheduled. This secondary, “low-latency” node maps to the same GPU, but 

it’s logically separate from the main GPU graphics node.

At the hardware level, the GPU time-slices between the two nodes at (by default) 1ms 

intervals. There’s a slight caveat there, which is that currently they can only switch at draw 

call boundaries, so it’s really 1ms rounded up by the length of the last draw call. But the 

point is that we can submit work on the low-latency node, and within about 1ms, the 

GPU will switch to it, effectively preempting whatever command packet is running on the 

main node. Once the work on the low-latency node is finished, we’ll resume the main 

node.
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The upshot of all this is that the desktop compositor submits its work to the low-latency 

node, to help ensure that it gets a chance to run regularly even if other apps are using the 

GPU heavily.
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Okay, so what does all of this have to do with VR? Well, similarly to the desktop 

compositor, we want VR applications to reliably render at 90 Hz, or whatever the native 

framerate of the headset is, to ensure a good experience. In fact, this is even more 

important in VR because a rendering hitch means that you lose head-tracking and have a 

frame stuck to your face. It instantly causes disorientation and, if hitches happen too 

often or for too long, it can lead to physical discomfort.

So, VR apps need a level of protection from other apps on the system, similar to the 

desktop compositor.
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In fact, the analogy with the desktop compositor goes further. Oculus and Valve both 

have, in their software stack that you use to talk to their headsets, a VR compositor 

process. In their systems, VR apps don’t present to the headset directly; instead, they 

submit rendered frames to the compositor, which owns and manages the actual display. 

It’s very much parallel to the way windowed apps submit frames to the desktop 

compositor. 

There are a variety of reasons for this. For instance, it allows compositing multiple VR 

apps, or multiple “layers” of different framerate and resolution. You can imagine playing a 

VR game, while also having a VR chat window open to talk to your friends. Or a virtual 

office in which various apps are rendering objects into your workspace. Things like that.

The VR compositor also acts as a safety net; if an app misses a frame, the compositor can 

re-present the old frame and warp it for an updated head pose, so that you still have 

head-tracking during short hitches. That’s called asynchronous timewarp. And in an 

extreme case, if an app crashes or hangs, the VR compositor can detect that and soft-fail 

back to some basic VR environment, like a plain room, so that you aren’t disoriented.
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So, to make a very long story short, as part of NVIDIA’s VR toolkits we expose an API that 

enables apps to opt-in to running on the low-latency node. So headset developers who 

have a VR compositor can give it the same prioritization that the normal desktop 

compositor gets. This is in the form of a DX11 extension that enables you to create a 

special low-latency DX context, which will submit to the low-latency node.

In the future, we’ll also extend this API to take advantage of the GPU scheduling and 

preemption improvements in Windows 10.

41



Direct Mode is another feature targeted at VR headset vendors running on Windows. It 

enables our driver to recognize when a display that’s plugged in is a VR headset, as 

opposed to a monitor, and hide it from the OS so that the OS doesn’t try to extend the 

desktop onto the headset or move your windows onto it. Then VR apps can take over the 

display and render to it directly, getting completely exclusive access to the display with 

no OS compositor or anything interfering.

Our Windows Direct Mode API also provides low-level access to information about video 

modes, vsync timing, and control over the flip chain. VR software can manage those 

details itself to ensure the lowest possible latency between rendering and scan-out to the 

display. All in all, this just provides a better user experience in general for working with 

VR.
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Another benefit of Direct Mode is that we can expose the ability to render directly to the 

front buffer—i.e. the buffer currently being scanned out to the display. Although it takes 

advanced low-level know-how to make use of this feature, it can help reduce latency still 

further, using tricks like rendering during vblank or racing the beam.
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