GC

Ambient Occlusion Fields and Decals in
Infamous 2

Nathan Reed
Rendering Programmer, Sucker Punch Productions

GAME DEVELOPERS CONFERENCE

SANFRANCISCD, CA
MARCH 5-9, 2012
EXPQ DATES: MARCH 7-9

LQY bl diKFIYy wSSRXZ | NBYRSNAY3I LINPINIYYSN
. SttS@dz2Sx 2!z FyYyR LQY 3J2Ay3 G2 aLISEl G2
occlusion techniques we used in our recent game, Infamous 2.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Background: Infamous 2

e PS3 exclusive

e Open-world, urban environment
e Deferred-shading renderer

e Supports per-vertex baked AO, and SSAO

First of all, some background on our game: Infamous 2 is a PS3 exclusive,
openworld game set in an urban environment. We have a defesieading
renderer, and like many game engines, it supports two main ambient

occlusion (AO) technologies: static, pertex baked ambient occlusion, and
screenspace ambient occlusion (SSAO).

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

AO — large or small scale?

e Baked AO is great, but...
* Per-vertex needs tessellation for fine detail
e Lightmaps need a lot of memory for fine detail
e Can’t move things around at runtime

e Best for large-scale, static objects

Static, baked AO is great when it works, but it has some drawbacks. In order

to get smallerscale details in your AO, you may need to tessellate your

YSaKSa Y2NB (KIy &2 dzQRISNISE TA T2 NJ 2AdFQ N2 da
it in textures, they need a lot of memory to get enough resolution for fine

detail, especially for a big, opemorld environment. And of course, with any

0F 1SR I LILINRI OK &2dz Ol yn@akime2 @S 2 NJ OKI y 3§

Therefore, baked AO is bestiited for very largescale occlusion where both

source and target are likely to be static, such as from a building onto the
a0NBStGasz ffSeazx FyR 20 KGithdfarstomllerRA Yy 3& | N
scale occlusion or for things that may move around.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

AO — large or small scale?
e SSAQ is great, but...

e Limited radius in screen space
e Missing data due to screen edges, occlusion
¢ Inconsistent from one camera position to another

e Best for very fine details

On the other hand, SSAO is completely dynamic, so it can adapt to anything

moving or changing. But it typically has a limited radius in screen space for
performance reasons, so if you get up close to an object the shadows will

aSSY (2 O2ydiN)YOGz airyoOS G(GkSe OFyQl 3Si

l YR &2dz KI @S y2 Ay T2 Ndffsciedndybehind 2 dzii | y & { K
something else. Because of both of these effects, SSAO can give different

looking shadows at different camera positions.

As a result, SSAO is a good fit for very fine details of ambashision, but
not for larger scales.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

Our hybrid approach

e Can complement baked AO and SSAO
* Medium-scale, partly static

e Work in world space: precompute AO from an
object onto the space around it, store in a texture.

¢CKSNBQa I 3JIL) 6SGsSSy 6F1SR 'h IyYyR {{!h
well-suited for occlusion on the medium scale, bigger than the SSAO radius

odzi ayvYlftfSNI GKIY YSak GSaaSttlriarazyo { 2
approach that casupplementbaked AO and SSAO by handling occlusion on

the medium scale.

The basic idea is to precompute a representation of the AO that an object
casts onto the space around it, and stdhat datain a texture. This is done in
world space, so it has a consistent appearance from all camera positions.

Our hybrid approach

e Precompute based on source geometry only, not
target. Can be moved in real-time.

e Apply like a light in deferred shading: evaluate AO
per pixel, within region of effect.

e Two variants: AO Fields & AO Decals

And the precompute is based only on the source geometry, not on the target,

so it can be moved arourid reaktime. L 1 Q&4 y 24 02 YLJX S{iSté& R@&.
require the source geometry to be rigid. It gets applied very much like a light

in deferred shading: we draw a box around the object and use a pixel shader

to evaluate AO at each shaded point within the box.

CKSNBE IINB (62 GFENAIYyGa 2F GKAAZ 6KAOK ¢
talk about each in turn.

Ambient Occlusion Fields

[SGQa adlFI NI 6AGK !'!'h CASfRa® | SNBQa |
video is at http://reedbeta.com/gdc)

{{'h A& RAA&AlFIO0fSR Ay (KAA OARS2: a2 (KS
these objects is all due to the AO fields. We use it on many smaller objects like

the mailbox and potted plants, but also on a few larger ones, such as the cars.

As you can see, it gives quite plausible results for objects in motion.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

AO Fields

e Similar to previously reported techniques
¢ Kontkanen and Laine, “Ambient Occlusion Fields”, SIGGRAPH '05

¢ Malmer et al. “Fast Precomputed Ambient Occlusion for Proximity Shadows”,
Journal of Graphics Tools, vol. 12 no. 2 (2007)

¢ Hill, “Rendering with Conviction”, GDC '10

l'h FASTtRA FNB AAYAfTFINI G2 | FSg6 LINBJA 2 dz3
list of references.

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

AO Fields: Precomputing

e Put a volume texture around the source object

e Each voxel is an occlusion cone:
¢ RGB = average direction toward occluder
e A = width, as fraction of hemisphere occluded

So how does this work? First of all, we put a box around the car, and put a
volume texture in the box. Each voxel in that texture stores an occlusion cone
representing how the car looks from that point. The RGB components are a
unit vector in the average direction of occlusion, and the alpha component
stores the width of that cone, as a fraction of the hemisphere occluded.

| SNBEQ&d + RAIFINIY 2F GKS 200t dzaiz2y &l YLIX
represents one voxel of the texture, and as you can see, the cones points
toward the car, getting wider the closer they are.

10

AO Fields: Precomputing

¢ |[terate over volume texture voxels

e Render geometry into a 32%x32 cubemap centered on
each voxel

e Read-back and compute average direction of drawn pixels
(weighted by solid angle)

e Compute occluded fraction of hemisphere around that
direction

All of this gets built offline by our tools in a pretty straightforward way. For
each voxel, we put the camera at the voxel center and render the car into a
small cubemap. Then we pull that cubemap back and work out the centroid of
the drawn pixels, in 3D, with solid angle weighting. Then we count how many
pixels were drawn, again with solid angle weighting, to get the occluded
fraction of the hemisphere.

11

GAME DEVELOPERS CONFERENCE" 2012 MARCH 5-9, 2012 WWW.GDCONF.COM

AO Fields: Precomputing

average occlusion direction ' occlusion cone width

G

MR,
v
- (|
<
[N
§ e
SR
S
N

Fe

| SNBEQa UGKA& LINRPOSaa aoOKSYFUAOlItteo ¢ KS
from one particular voxel. We pull back that cubemap, use the centroid of the

drawn pixels to get the cone axis, and count the number of drawn pixels to get

its width, as a fraction of the hemisphere.

P

12

That was the precomputed part of it. Nawreattime weneed to apply this.

LGQa SEIFIOGte fA1S8S I fA3IKG Ay RSTSNNBR &
field and in the pixel shader, we sample théofer to get the worldspace

position and normal vector of the shaded point. All the usual deferred

shading optimizations can be used, such as stemagking or deptibounds

tests.

Oncewe have the world position, we transform that into the local space of
the field, sample the volume texture to get the occlusion vector and cone
width, and transform the occlusion vector back into world space.

13

