
LΩƳ bŀǘƘŀƴ wŜŜŘΣ ŀ ǊŜƴŘŜǊƛƴƎ ǇǊƻƎǊŀƳƳŜǊ ŀǘ {ǳŎƪŜǊ tǳƴŎƘ tǊƻŘǳŎǘƛƻƴǎ ƛƴ
.ŜƭƭŜǾǳŜΣ ²!Σ ŀƴŘ LΩƳ ƎƻƛƴƎ ǘƻ ǎǇŜŀƪ ǘƻŘŀȅ ŀōƻǳǘ ŀ ŎƻǳǇƭŜ ƻŦ ƴŜǿ ŀƳōƛŜƴǘ
occlusion techniques we used in our recent game, Infamous 2.

1

First of all, some background on our game: Infamous 2 is a PS3 exclusive,
open-world game set in an urban environment. We have a deferred-shading
renderer, and like many game engines, it supports two main ambient
occlusion (AO) technologies: static, per-vertex baked ambient occlusion, and
screen-space ambient occlusion (SSAO).

2

Static, baked AO is great when it works, but it has some drawbacks. In order
to get smaller-scale details in your AO, you may need to tessellate your
ƳŜǎƘŜǎ ƳƻǊŜ ǘƘŀƴ ȅƻǳΩŘ ƭƛƪŜ ƛŦ ȅƻǳΩǊŜ ōŀƪƛƴƎ !h ǇŜǊ-ǾŜǊǘŜȄΤ ƻǊ ƛŦ ȅƻǳΩǊŜ ǎǘƻǊŜ
it in textures, they need a lot of memory to get enough resolution for fine
detail, especially for a big, open-world environment. And of course, with any
ōŀƪŜŘ ŀǇǇǊƻŀŎƘ ȅƻǳ ŎŀƴΩǘ ƳƻǾŜ ƻǊ ŎƘŀƴƎŜ ŀƴȅǘƘƛƴƎ in real-time.

Therefore, baked AO is best-suited for very large-scale occlusion where both
source and target are likely to be static, such as from a building onto the
ǎǘǊŜŜǘǎΣ ŀƭƭŜȅǎΣ ŀƴŘ ƻǘƘŜǊ ōǳƛƭŘƛƴƎǎ ŀǊƻǳƴŘ ƛǘΦ LǘΩǎ ƴƻǘ ǿŜƭƭ-suited for smaller-
scale occlusion or for things that may move around.

3

On the other hand, SSAO is completely dynamic, so it can adapt to anything
moving or changing. But it typically has a limited radius in screen space for
performance reasons, so if you get up close to an object the shadows will
ǎŜŜƳ ǘƻ ŎƻƴǘǊŀŎǘΣ ǎƛƴŎŜ ǘƘŜȅ ŎŀƴΩǘ ƎŜǘ ƭŀǊƎŜǊ ǘƘŀƴ ŀ ŎŜǊǘŀƛƴ ƴǳƳōŜǊ ƻŦ ǇƛȄŜƭǎΦ
!ƴŘ ȅƻǳ ƘŀǾŜ ƴƻ ƛƴŦƻǊƳŀǘƛƻƴ ŀōƻǳǘ ŀƴȅǘƘƛƴƎ ǘƘŀǘΩǎ offscreen, or behind
something else. Because of both of these effects, SSAO can give different-
looking shadows at different camera positions.

As a result, SSAO is a good fit for very fine details of ambient occlusion, but
not for larger scales.

4

¢ƘŜǊŜΩǎ ŀ ƎŀǇ ōŜǘǿŜŜƴ ōŀƪŜŘ !h ŀƴŘ {{!hΣ ǿƘŜǊŜ ƴŜƛǘƘŜǊ ŀǇǇǊƻŀŎƘ ƛǎ ǾŜǊȅ
well-suited for occlusion on the medium scale, bigger than the SSAO radius
ōǳǘ ǎƳŀƭƭŜǊ ǘƘŀƴ ƳŜǎƘ ǘŜǎǎŜƭƭŀǘƛƻƴΦ {ƻ ƛƴ ƻǳǊ ŜƴƎƛƴŜ ǿŜΩǾŜ ŀŘŘŜŘ ŀ ƘȅōǊƛŘ
approach that can supplement baked AO and SSAO by handling occlusion on
the medium scale.

The basic idea is to precompute a representation of the AO that an object
casts onto the space around it, and store that data in a texture. This is done in
world space, so it has a consistent appearance from all camera positions.

5

And the precompute is based only on the source geometry, not on the target,
so it can be moved around in real-time. LǘΩǎ ƴƻǘ ŎƻƳǇƭŜǘŜƭȅ ŘȅƴŀƳƛŎΤ ƛǘ ŘƻŜǎ
require the source geometry to be rigid. It gets applied very much like a light
in deferred shading: we draw a box around the object and use a pixel shader
to evaluate AO at each shaded point within the box.

¢ƘŜǊŜ ŀǊŜ ǘǿƻ ǾŀǊƛŀƴǘǎ ƻŦ ǘƘƛǎΣ ǿƘƛŎƘ ǿŜ Ŏŀƭƭ !h CƛŜƭŘǎ ŀƴŘ !h 5ŜŎŀƭǎΣ ŀƴŘ LΩƭƭ
talk about each in turn.

6

[ŜǘΩǎ ǎǘŀǊǘ ǿƛǘƘ !h CƛŜƭŘǎΦ IŜǊŜΩǎ ŀ ǾƛŘŜƻ ǘƻ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŜ ǘŜŎƘƴƛǉǳŜΦ ό¢ƘŜ
video is at http://reedbeta.com/gdc)

{{!h ƛǎ ŘƛǎŀōƭŜŘ ƛƴ ǘƘƛǎ ǾƛŘŜƻΣ ǎƻ ǘƘŜ ŎƻƴǘŀŎǘ ǎƘŀŘƻǿǎ ȅƻǳΩǊŜ ǎŜŜƛƴƎ ŀǊƻǳƴŘ
these objects is all due to the AO fields. We use it on many smaller objects like
the mailbox and potted plants, but also on a few larger ones, such as the cars.
As you can see, it gives quite plausible results for objects in motion.

7

!h ŦƛŜƭŘǎ ŀǊŜ ǎƛƳƛƭŀǊ ǘƻ ŀ ŦŜǿ ǇǊŜǾƛƻǳǎƭȅ ǊŜǇƻǊǘŜŘ ǘŜŎƘƴƛǉǳŜǎΣ ŀƴŘ ƘŜǊŜΩǎ Ƴȅ
list of references.

8

So how does this work? First of all, we put a box around the car, and put a
volume texture in the box. Each voxel in that texture stores an occlusion cone
representing how the car looks from that point. The RGB components are a
unit vector in the average direction of occlusion, and the alpha component
stores the width of that cone, as a fraction of the hemisphere occluded.

9

IŜǊŜΩǎ ŀ ŘƛŀƎǊŀƳ ƻŦ ǘƘŜ ƻŎŎƭǳǎƛƻƴ ǎŀƳǇƭŜǎ ǎǳǊǊƻǳƴŘƛƴƎ ǘƘŜ ŎŀǊΦ 9ŀŎƘ ŎƻƴŜ
represents one voxel of the texture, and as you can see, the cones points
toward the car, getting wider the closer they are.

10

All of this gets built offline by our tools in a pretty straightforward way. For
each voxel, we put the camera at the voxel center and render the car into a
small cubemap. Then we pull that cubemap back and work out the centroid of
the drawn pixels, in 3D, with solid angle weighting. Then we count how many
pixels were drawn, again with solid angle weighting, to get the occluded
fraction of the hemisphere.

11

IŜǊŜΩǎ ǘƘƛǎ ǇǊƻŎŜǎǎ ǎŎƘŜƳŀǘƛŎŀƭƭȅΦ ¢ƘŜǊŜΩǎ ŀƴ ŜȄŀƳǇƭŜ ƻŦ ǘƘŜ ŎǳōŜƳŀǇ ŀǎ ǎŜŜƴ
from one particular voxel. We pull back that cubemap, use the centroid of the
drawn pixels to get the cone axis, and count the number of drawn pixels to get
its width, as a fraction of the hemisphere.

12

That was the precomputed part of it. Now in real-time we need to apply this.
LǘΩǎ ŜȄŀŎǘƭȅ ƭƛƪŜ ŀ ƭƛƎƘǘ ƛƴ ŘŜŦŜǊǊŜŘ ǎƘŀŘƛƴƎΥ ǿŜ ŘǊŀǿ ǘƘŜ ōƻǳƴŘƛƴƎ ōƻȄ ƻŦ ǘƘŜ
field and in the pixel shader, we sample the G-buffer to get the world-space
position and normal vector of the shaded point. All the usual deferred-
shading optimizations can be used, such as stencil masking or depth bounds
tests.

Once we have the world position, we transform that into the local space of
the field, sample the volume texture to get the occlusion vector and cone
width, and transform the occlusion vector back into world space.

13

